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A set of numerical techniques for calculating heat and particle source rates due to neutral 
beam injection in axisymmetric tokamaks is described. While these techniques consume a 
substantial amount of computer time, they take into account a number of significant, and 
normally neglected, effects. Examples of these effects are reionization of escaping charge 
exchanged beam particles, finite fast ion orbit excursions, beam deposition through collisions 
of beam neutrals with circulating beam ions, and the transport of thermal neutrals in the 
plasma due to charge changing collisions with beam ions. 

I. INTRODUCTION 

In order to determine the electron thermal diffusivity (&(r, t)), the ion thermal 
diffusivity kr(r, t)), and the particle diffusivity (D(r, t)) from time- and space-resolved 
measurements of plasma parameters during neutral beam injection in tokamaks, one 
needs to know accurately the beam power delivered from the injected particles to the 
bulk ions, the power delivered to the bulk electrons, and the ion and electron particle 
source rates as functions both of space and time. In ohmically heated tokamak 
discharges, the current density (j(r)), and the concomitant safety factor, q(r), as well 
as j(r) . E(r), are only known qualitatively, due to uncertainties in the electrical 
conductivity and in E,(r), the toroidal electric field. As a result it is difficult to 
determine xe accurately, or to calculate the neoclassical xi (which is proportional to 
q’) for comparison with experiment. In addition, because of the direct link between 
the poloidal magnetic field (B,) and the ohmic heating power density, it is intrin- 
sically impossible to determine the parametric dependence of xe on B, in tokamak 
experiments without auxiliary heating. With neutral beam injection, by contrast, it is 
at least in principle possible to determine the input power profiles with reasonable 
accuracy, and the plasma heating can certainly be varied independently of the 
confining fields. In addition, since the particle source rate is peaked near the plasma 
center, neutral beam injection provides much clearer experimental conditions for the 
study of particle transport than does the usual recycling source, which is strongly 
peaked to the outside. There is, as a result, a high premium on knowing the particle 
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source term accurately, in addition to the heating rate. When rib/n, is not small, 
however, the calculation of the energy and particle sources due to injection is 
especially complex, and Monte Carlo techniques must be used in order to include all 
of the effects which are known to be important. In this paper we describe the methods 
used in the transport analysis code TRANSP (Ref. [I]) to calculate beam deposition 
(Section II), fast ion orbits (Section III), charged particle collisions (Section IV), 
charge exchange transport of beam particles (Section V), and finally beam driven 
currents and momentum transfer (Section VI). In light of the fact that neutral beam 
injection experiments are costly, and the data available for analysis are rare, we feel 
that as complete a model as possible should be used to analyze transport in these 
cases. Nonetheless there is real value in quick, approximate treatments and in the 
concluding Section VII we point out a number of corners that might be cut, suggest a 
few ways to do this, and also point out which effects, in our opinion, may not be 
neglected in present day experiments. 

II. BEAM DEPOSITION 

A. Constant Census 
In order to provide control over statistical fluctuations in the calculated source 

rates, it is desirable to maintain a chosen “constant census” of trajectories being 
followed by the fast ion orbit code. We find, for example, that runs with -1000 
Monte Carlo particles give reasonably smooth and reproducible energy and particle 
source rates. In order to maintain this “constant census” of test particles, whenever 
new beam particles are to be injected, first old ones must be deleted. Thus each time 
the code calculates beam deposition it tirst computes the actual physical number of 
particles to be introduced, given by 

!’ 
t+At 

Ninj = VbW + zb&/2) + ~&l/3)1 dt, 
t 

where At is the beam code time step, typically 5 msec for PLT, and Z6 is the input 
neutral beam current at the full, half, and one-third energies. Ninj is to be compared to 
the number of physical fast ions circulating in the plasma, N,i,c, and the code 
prepares to inject a number of new Monte Carlo particles given by 

N,*,, = N:cNi”j 
Ninj + Ncirc ’ 

where the star superscript designates Monte Carlo particles, as opposed to physical 
ones. N,*, is the desired constant census number; in our case ec = 1000. To make 
space for the new particles we must eliminate a number of Monte Carlo particles 
using Russian roulette. The number to delete, N&, is given by 

N& = N,*,, + N* - N,*,, 
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where N* is the current number of circulating Monte Carlo particles. The fraction to 
be randomly deleted, q,/N*, is eliminated in each radial zone separately, in order to 
avoid creating fluctuations in the beam density. Each new Monte Carlo particle is 
assigned a weight, W, which gives the number of physical particles it represents. 
After the Russian roulette, the total physical energy that has been deleted from the 
circulating ions is replaced by proportionally increasing the weight of each of the 
remaining particles. We note that this technique tends to minimize Russian roulette 
during the steady state phase of injection, since at this time typically about the same 
number of beam ions are being injected as are thermalizing at 3 Ti, leaving the 
plasma on loss orbits, or leaving by charge exchange. As a consequence of this, the 
Monte Carlo weights do not increase indefinitely during the slowing down process. If 
instead one allots Monte Carlo particles to new injected ions in proportion to their 
energy, rather than in proportion to their number, W increases considerably during 
the lifetime of a particle. As a result fairly few Monte Carlo particles eventually must 
represent the entire thermalization rate of the slowed down beam ions, and this 
seemingly reasonable approach gives unacceptably poor statistics in the particle 
source terms. 

B. Neutral Trajectories 

1. Geometry. Once the code has determined the number of new Monte Carlo 
particles to inject, it selects trajectories for these particles. The finite-width neutral 
beam is taken to be composed of an array parallel rays traveling horizontally into the 
plasma from the ion source, while the intensity profile simulates the measured beam 
intensity profile at the plasma center. The code uses the Box-Mueller technique 
(Ref. [2]) to sample starting points out of a Gaussian intensity distribution, and any 
trajectories which lie outside of a rectangular cut-off which represents the injection 
port, are rejected. The energies of the injected particles are randomly selected with 
probability proportional to the measured beam intensity at E,, E$2 and Z&/3. 

To determine the deposition of the neutral particles, the usual Monte Carlo 
technique for simulating exponential attenuation is used. A random number, v, is 
selected such that 0 < ?Z < 1. The code then performs the integral 

along the particle trajectory, where utot is the total beam stopping cross section 
described below. The integration is done most economically by stepping not in 
constant increments of 61 along the particle trajectory, but rather in constant 
increments, JR, of major radius. This allows rather large steps in 61 near the point 
where the neutral beam is tangent to B, without any sacrifice in accuracy. At the 
point along the trajectory where Z = ln( l/q), the beam neutral is taken to be ionized 
and is converted to a fast ion ready to be treated by the orbit code. 

A final Russian roulette is applied before initial conditions for a fast ion are passed 
to the orbit code. Particles that are deposited near the center of the plasma are 
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relatively more important for plasma heating and fueling than those that orbit at the 
periphery, but the shrinking volume of the radial zones near the plasma core tends to 
lower the number of Monte Carlo particles in the central zones. To counteract this 
tendency, Russian roulette is used to improve statistics near the center, at the expense 
of statistics towards the outside of the plasma. At the moment of deposition at radius 
r, a Monte Carlo particle represents W fast ions. After deposition, this weight, W, is 
to be increased by a factor F = 1 + (W, + l)( / ) r a , w h ere W, is a constant, typically 
of order 10-50. A random number is chosen, however, 0 < ‘1 < 1, and if 9 > l/F the 
particle is “Russian rouletted,” i.e., eliminated from consideration. Thus near the 
plasma periphery particles are given weights increased by a factor of - W,, but only 
-l/W, of those that are initially deposited are followed by the orbit code. When W, 
is chosen equal to the number of radial zones in the code (20 in the current version of 
the TRANSP beam code) this redistribution of statistics just counterbalances the 
intrinsic bias in the statistics towards giving the outer zones with larger volumes more 
Monte Carlo particles. Any weight which is created (or destroyed) through the Monte 
Carlo noise associated with this Russian roulette step is eliminated by renormalizing 
all of the new deposited weights to give the proper total amount of injected physical 
energy. 

2. Stopping cross sections. otot, the total beam stopping cross section, has 
contributions from electron impact ionization (Ref. [3]), from impact ionization 
collisions with hydrogenic species bulk ions (Ref. [3]), from charge exchange with 
hydrogenic species bulk ions (Ref. [4]), from total electron loss in collisions with 
impurities (Ref. [ 5]), and finally from charge exchange and impact ionization with 
circulating beam ions. Reaction rates for collisions with electrons, (UU)ei, and with 
impurities (uu),~~~ are calculated in the usual way (Ref. [6]). For charge changing 
collisions with hydrogenic species bulk ions, (Uv)ii and (ou),, are interpolated from a 
table of previously calculated values for a monoenergetic beam traveling in a 
Maxwellian background plasma. The TRANSP code allows for a mixture of 
hydrogenic species, and collision cross sections are computed separately for each. 

Beam neutral collisions with circulating beam ions are somewhat more difftcult to 
compute. The reaction rates for charge exchange and impact ionization between the 
circulating beam ions and the injected beam neutrals, which are required at a given 
time step, are calculated during the previous beam code time step. During the 
previous time step’s calculation of beam deposition, the density profiles of injected 
primary neutrals at E,, E,/2 and E,/3 were calculated by taking contributions from 
each step along the trajectories of each ‘injected Monte Carlo neutral. The result is 
given by 

where V is the volume of the region under consideration, Wj is the weight of thejth 
Monte Carlo particle (the number of physical particles it represents), slj is its flight 
path within volume V, and vi is its injection velocity. 
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During the subsequent orbiting and slowing down of the circulating fast ions 
(described below) the reaction rates for charge exchange and impact ionization 
between the fast ions and the primary beam neutrals are calculated. The relative 
angles between the injected neutrals and the orbiting ions are taken into account, and 
direct calculations of the beam-beam reaction rates for charge exchange ?z~~,‘(cv),, 
and for impact ionization nin,+(a~)~~ are performed by summing 

n;n; ((TV) = - dyv C stj Wja(vrel> vreI 
J 

along the ion trajectories. Since n; is known for each energy, the stopping power of 
the beam ions, no, is now known as well and can be used in the subsequent beam 
deposition step as part of the total plasma stopping power. neutotv is then given by 
the sum of all the reaction rates discussed here. For high power neutral injection into 
high temperature, low density, plasmas (Ref. [7]), beam-beam collisions can 
constitute an important fraction of the total stopping power of the plasma (Fig. 1). 

C. Particle Source Terms 

The source rates of electrons and thermal neutral atoms within the plasma due to 
beam deposition could be calculated by taking into account only particle production 
during the ionization and charge exchange events which occur when Monte Carlo 
beam neutrals are converted into fast ions. This method, while it has the advantage 
that it conserves particles precisely (for example, only W neutral atoms can be 
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FIG. 1. Deposition rate of beam ions due to: (A) Impact ionization on electrons, ions and impurities 
plus charge exchange with impurities; (B) charge exchange with D+ background ions; (C) charge 
exchange with H+ background ions; (D) beam-beam charge exchange; (E) beam-beam impact 
ionization. This is a case of 2.1 MW Do injection into an initially H+ plasma. The line average electron 
density rose from 1, to 2 x lOI cm-‘, and the ion temperature rose to 5.5 keV. 
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generated by charge exchange between thermal ions and a Monte Carlo injected 
neutral with weight IV), it has the disadvantage of failing to make use of all of the 
information available. Instead we use the technique described above for the 
calculation of the density of the primary beam neutrals, ni, to also calculate 
nIni(au)cx~ in order to generate the volume source of thermal neutrals as input to the 
neutral transport code. This neutrals calculation is itself a Monte Carlo code which 
has evolved from the AURORA code (Ref. [8]). In addition the beam code calculates 
~~ ni(U~)i, (impact ionization on hydrogenic bulk ions), ni ~,.((Tv),~~~ (total electron 
loss in collisions with impurities), and nEn,(a~),~ (electron impact ionization), in 
order to generate the volume electron source due to injection. The creation of beam 
ions from fast neutrals is not considered a source of ions; rather the beam ions are 
considered an independent species until they slow down to ; Ti. When beam ions 
charge exchange with thermal neutrals, this consistutes a neutral particle sink (which 
is included in the neutral transport code), and also a source of thermal ions. 

The calculation of the particle source terms is, in many cases, the aspect of the 
beam code which is most subject to Monte Carlo noise. This is because the particle 
source that is calculated comes largely from a single deposition step, while the 
heating rates are due to circulating fast ions that have been deposited over a series of 
previous steps. Control over the number of neutral trajectories tracked into the 
plasma has therefore been provided in order to be able to improve the source term 
statistics without depositing more than the required number of Monte Carlo fast ions. 
Typically 700 neutral trajectories need to be followed each time step for adequate 
statistics, and if fewer are called for by the deposition code, the necessary additional 
trajectories are provided for use in the source term calculations. 

III. FAST ION ORBITS 

Once beam neutrals are ionized in the plasma, the guiding center orbit equations 
are integrated during the slowing down process to find where energy and thermalized 
ions are deposited in the plasma. The magnetic geometry currently employed in 
TRANSP consists of axisymmetric circular concentric flux surfaces, with B, assumed 
to be much less than B,, so that the gradient and curvature drifts in the poloidal field 
may be neglected. With these approximations the guiding center orbit equations 
become quite simple. Expressed in I, 0 coordinates they are 

i = vd sin 8, 

where 
vd = (E - PBP) 

GA ’ 
E = v=, P = @A a,, = eB&nc>. 
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E and ,u are conserved quantities, so we calculate directly v,, = V- An equation 
for ti,, can also be derived 

,uBr sin 8 

This equation however, is only integrated in order to determine the sign of v,, . Thus 
our orbit equations explicitly converse E and p to the computer round-off error. It is 
convenient to express the orbit equations in the T, 0 “flux coordinates” described 
above, since these are natural to the problem being solved when v,,B,/B, $ vd. We 
have experimented with using R, y coordinates in the poloidal plane, and we find that 
a time step of approximately half the size is required to obtain equal accuracy. 

R, y coordinates have the advantage that they do not have the nonphysical 
singularity at the orgin which makes 8 go to infinity for an orbit drifting vertically 
through r = 0. To avoid this problem, which can be important for low magnetic field 
and high beam energy experiments where vd is not small, we have adopted a hybrid 
approach. In the region near the orgin where r < 3v, at, the code solves the orbit 
equations in R, y coordinates, while elsewhere it employs r, 8 “flux coordinates.” This 
avoids the singularity at the origin, while preserving most of the speed and accuracy 
of the r, 0 system. 

The technique we use to integrate the drift equations is to perform a simple two- 
term Taylor expansion. We have not experimented extensively with other methods, 
but very high order techniques would be inappropriate, since the drift motion is 
interrupted many times during during each orbit by Fokker-Planck collisions (see 
below). We find that to maintain roughly constant accuracy in integrating the 
equations as pitch angle and energy vary, it is convenient to impose a time step 
control: 

6t GC v-‘(1 f 3,uB/&). 

For a velocity of 2 x 10’ cm/set, and p = 0 in PLT, adequate accuracy is obtained 
with dt = 1.5 X IO-’ sec. If 6t is increased substantially above this value, the first 
symptom of numerical inaccuracy is that passing orbits tend to shrink down towards 
r = 0, in violation of Liouville’s theorem. For scaling from machine to machine, we 
have found that 6t should be varied approximately in proportion to the major radius 
of the device. 

IV. CHARGED PARTICLE COLLISIONS 

A. Fokker-Planck Equation 

The appropriate Fokker-Planck operator for small angle binary collisions of test 
particles in a magnetized Maxwellian plasma, with vi < v < ve, is (Refs. [9, lo]) 
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where 

5, = 
6.32 x 10’ A,Tz’* (eV) 

n,Z~lnfl, ’ 
v,, = (z)xiviv:. 
II z,[Z] A,d ’ 

vi = 1.51 X 10” Tj”(eV) [Z]/Xi, 

,qq = Ci niZf In ni [Z] _ CiniZf In AJA, 
n,lnA, ’ xi- n,lnA, ’ 

In this formulation we have neglected terms of order (7’,lE,)2 and of order 
exp(-EJT;). The terms proportional to v: represent collisions with thermal ions; the 
other terms represent collisions with electrons. Interactions between beam ions have 
been neglected in this linearization of the collision operator. The beam particles do 
however displace thermal ions, reducing ni/ne and so decreasing t$. In order to 
investigate the accuracy of this approximation, we have developed a simple isotropic 
Fokker-Planck code, based on solving the non-linear integro-differential 
Fokker-Planck equation, essentially as described in Ref. [ 1 I]. For a reasonable range 
of parameters, including nb 2 n,, we find that the ion and electron heating rates as 
calculated with the full non-linear equation are approximated to within 1% by using 
the linearized operator, but allowing the beam particles to displace thermal ions, as in 
the Monte Carlo code. Collisions between beam particles cause significantly 
enhanced energy diffusion of the beam species, but evidently little change in the net 
energy transfer. 

We have not discussed so far the effect of the toroidal electric field. Neglecting 
neoclassical processes, the combined drift of the electron distribution and the toroidal 
electric field together give rise to an “effective electric field,” E*. For Z, = 1, 
E* = E,( 1 - l/(Z)). If one assumes that the electrons in a tokamak have a 
neoclassical distribution function, then the electron banana trapping process also 
affects E*. Calculations however are only available for the collisionless regime (Refs. 
[ 12, 131). For large aspect ratio one finds 

E* = E,[ 1 - l/(Z) + 1.46&l + O.-l/(Z))/(Z)]. 

This gives rise to an acceleration of the fast ions 

au eE*[ -=- 
at mh 
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and a change in pitch angle 

69 

Both of these effects are implemented each time step by altering u and [ by 

Av = GteE*[/m,, 

AC= &(l - <‘)eE*/m,v. 

B. Monte Carlo Simulation Technique 

The three terms in the Fokker-Planck operator given above represent drag, energy 
diffusion, and pitch angle scattering. Starting from a delta function source (the Monte 
Carlo particle with given v,,, &,), the operator causes a directed motion in velocity 
space towards lower u, and smaller ]<I, as well as a spreading in both dimensions. In 
order to calculate these effects, we evaluate 

Taking f = 6(u - u,,) S(c - &,), we arrive at 

(&+t)=-~(1-2T&b~2)--& (1 + Ti/mbu’), 
s s 

(x/at) = - Vii[ 

and the appropriate displacement in velocity space is given by 

:(I--2T,lm,v:)+$- 
s 

uo5, (1 + Ti/mbui) 9 1 
where v’ and C are the new values of v and [ after a time step tit. 

The diffusive spreading in velocity space is given by 

(Au2) = ((u - u’)~) = &((av’,at) - 2v(&,at)) 
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and 

@C2) = (CC - C)‘) = w(ac’p) - x(x/at)) 

where we have retained terms to order 6~. only. Evaluating these expressions, we 
arrive at 

and 

(A<*) = 6t Vii( 1 - C). 

The spreading is implemented by using the Box-Muller technique to select a new 
velocity and a new pitch angle from Gaussian distributions of width (do*) and (dc2). 
Note that if the speed diffusion is to be included, one must also include the order 
(T/E,) correction terms to the drag rates calculated above, in order to be consistent 
to order (T/E,). 

At each time step where u is altered, the beam particle energy loss to the ions, to 
the electrons, and to the toroidal electric field is evaluated. These quantities are stored 
as radial arrays for each beam code time step. 

C. Acceleration Technique 

Using the orbit equations described in Section III, and the Monte Carlo 
Fokker-Planck operator described above, one could simply integrate along fast ion 
trajectories, applying the collision operator at each time step. We find, however, that 
even for well optimized coding the computer time required for this straightforward 
simulation technique is exorbitant, and some method to speed up the calculation is 
required. The problem lies in the fact that the time scale for a fast ion to complete a 
single orbit is typically at most some tens of microseconds, while the thermalization 
time is on the order of tens of milliseconds. Thus inspection of the particle orbits in a 
straightforward simulation calculation reveals that many nearly identical orbits are 
generated over and over again during the slowing down process. This is most strongly 
evident for passing particles, which have the shortest orbit times and are the least 
sensitive to small changes in pitch angle. For particles close to the trapping 
boundary, however, the bounce time is much longer and the orbit topology is quite 
sensitive to small amounts of pitch angle scattering, so sequentially calculated orbits 
are not so nearly identical. 

Neoclassical theory suggests that the radial transport rate of beam ions in the 
banana regime should be proportional to their collision frequency. Since the slowing 
down rate is also a collisional phenomenon, one should therefore be able to enhance 
the Fokker-Planck effects, to some degree, relative to the orbital motion of the fast 
ions, with little net change in the radial transport. The limitation on this speed up 
technique is that the collision rate must not be so strongly enhanced that fast ions are 
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artificially transferred into the plateau regime, where transport processes no longer 
depend linearly on collision frequency. Indeed modern neoclassical theory (Ref. [ 141) 
shows that plateau effects extend well into the banana regime, and that D, does not 
become proportional to pi, until the plasma as a whole is extremely collisionless. This 
is because of the effect mentioned above: particles with pitch angles near the trapping 
boundary have long bounce times, and small collisions alter their orbits substantially; 
thus they enter into the banana regime at much higher energies than do more typical 
particles. 

The danger associated with too much speed up can be clearly seen in the fast ion 
orbit code. In straight simulation calculations, or in cases with modest degrees of 
acceleration, fast ions which go from counter passing orbits to banana orbits always 
pass through trajectories very close to the trapping boundary (Ref. [6]), where the 
banana tips meet at the machine midplane. If collisional effects are sped up substan- 
tially near the trapping boundary, however, particles can go from passing to deeply 
trapped without tracing out nearly trapped orbits. This means that their trajectories 
are less likely to travel outside of the plasma on loss orbits. 

To avoid the resulting spurious improvement in fast ion confinement, and to 
attempt to provide equal accuracy for all orbits against errors associated with the 
speed up procedure, a variable acceleration scheme is used. Each time a Monte Carlo 
particle crossed the machine midplane (thereby completing a half orbit) the code 
calculates the expectation value of the particle’s diffusion in pitch angle, (d[*)“*, its 
expected displacement in pith angle, (A<), its expected relative change in velocity, 
(du)/u, and its probability of change exchange, I n,(av),, dt, during the previous half 
orbit. In order to obtain the desired degree of accuracy and the desired speed of 
calculation, the code attempts to maintain the largest of these dimensionless quan- 
tities equal to a predetermined acceleration constant, G. It does this by varying the 
speed up which is applied uniformly to the Fokker-Planck, E-field and charge 
exchange processes for each half orbit, based on the results of the previous half orbit. 
Thus if (&*)/G* = 0.5, which is greater than (d[)/G, (dv)/(vG) and j Q,(W),, dt/G, 
the code will increase the speed up for the next half orbit by a factor of 2. Conversely 
if (dc2)/G2 were greater than 1, the speed up would be reduced. For PLT parameters, 
with G = 0.05 the acceleration factor can be order 200 for passing particles, while it 
is automatically reduced to -1-2 for particles near the trapping boundary. A 
nonphysical “deceleration” that would be associated with acceleration by less than 
unity is not permitted. Thus the loss regions for nearly trapped particles are 
adequately taken into account, and residual plateau effects on slower injected ions are 
accurately treated. Results from runs with G = 0.05 are in every respect 
indistinguishable from those of straight simulation runs, with the exception that 
execution times are reduced by more than an order of magnitude. For G = 0.1 in PLT 
the heating profiles are surprisingly close to the straight simulation runs, but the loss 
rates are somewhat reduced, since the nearly trapped orbits are not so accurately 

traced out. 
Finally, it is not necessary to perform a Fokker-Planck operation at each orbit 

time step. Since it is desirable to simulate the continuous velocity space diffusion that 
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occurs physically, many collision events are required per orbit, but this number of 
collisions is not necessarily identical to the number of integration time steps needed 
for solution of the drift equations. Execution time can be significantly reduced, with 
no change in results, by simply making use of a skip factor, S,, which determines 
the number of orbit time steps to skip between Fokker-Planck calculations. S, is 
dynamically adjusted after each half orbit to ensure a satisfactory number of 
Fokker-Planck calculations (~8) per half orbit. In a similar manner a second skip 
factor, S,,, is dynamically adjusted to maintain -50 charge exchange calculations 
(see Section V) per charge exchange mean free path. A minimum of 3 calculations 
are performed each half orbit, however, in order to ensure that the dynamic 
adjustment is reasonable. 

V. CHARGE EXCHANGE TRANSPORT OF BEAM PARTICLES 

Monte Carlo techniques are especially well suited to treating the problem of charge 
exchange transport of beam particles in tokamaks. In the usual approach to solving 
the Fokker-Planck equation by numerical integration (Ref. [lo]), one includes a 
charge exchange collision operator: 

af 
5 cx = -..L(~). 

This accounts for depletion of the fast ion distribution function by charge exchange, 
but it does not take into consideration the possibility that the second generation beam 
neutrals which are created in these collisions may be reionized in the plasma. In the 
Monte Carlo approach the reionization probability can be treated naturally by 
continuing to follow beam particles through all charge changing collisions, until they 
either thermalize or escape the discharge. 

A. Initial Charge Exchange 

Beam ions circulating in the plasma may charge exchange with thermal neutrals 
originating at the walls or limiter, with volume source thermal neutrals originating 
from beam deposition and from recombination, with first generation “primary” beam 
neutrals coming directly from the injectors, and finally with “secondary” beam 
neutrals that arise themselves from charge exchange of circulating beam ions. The 
contribution to n,(ou),, due to collisions with thermal wall source and limiter source 
neutrals, as well as due to collisions with thermal volume source neutrals, is 
calculated assuming a local Maxwellian neutral distribution function, with 
r,, = i(E,). At the same time local values of n,n~(au),, and n,n~(av),, are also 
computed, by integrating along the fast ion orbits. These are used to determine the 
loss rate for thermal neutrals due to collisions with beam ions, which is needed for 
the thermal neutral transport code. 
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The contribution to n,(av),, due to collisions with primary beam neutrals takes 
into account the angle between the circulating beam ion velocity vector and the 
velocity vector of the beam neutral. Since a full six dimensional beam neutral 
distribution is not retained, the neutral velocity is assumed to be in the direction of 
the central ray of the injector, and the beam neutrals are assumed to be localized 
poloidally on each flux surface in the area where the finite-width beam intersects the 
surface. Separate beam neutral density profiles for each injection energy are retained, 
however, so that the relative velocity between the injected neutrals and the circulating 
beam ions can be reasonably well calculated. As discussed in Section II, radial 
profiles of Nan,+,, and rz:nl (a~)~~ for each energy are calculated by integrating 
along the ion trajectories, for use in the beam deposition calculation. Since the 
volume source thermal neutrals arising from beam deposition tend to be localized on 
the large major radius side of the plasma, where the primary beam neutrals are 
located, the code assumes the same poloidal localization for these neutrals as for the 
beam neutrals. 

The final contribution to nE(au),,, from collisions with secondary beam neutrals, is 
difficult to evaluate precisely. A full calculation of this process would take into 
acount the distribution of secondary neutrals as a function of energy, aiming 
direction, radius and poloidal angle within the plasma; this would be both costly and 
highly subject to Monte Carlo noise. No simple approximation to the direction and 
poloidal distribution is available, as in the case of the primary beam neutrals. As an 
alternative therefore, the code keeps track only of the radial profile of the secondary 
beam neutral density, and of the profile of the average energy of the beam neutrals. 
To estimate the charge exchange reaction rate the relative energy is taken to be the 
sum of the beam ion energy and the average energy of the secondary beam neutrals. 
No anisotropy nor poloidal variation is assumed for the secondary neutrals. 

B. Monte Carlo Simulation Technique 

Particles which circulate at the outside of the plasma, in the high neutral density 
region, have large weights (i.e., represent many physical particles) due to the initial 
Russian roulette process used in the deposition calculation (see Section II). As a 
result, if these particles were straightforwardly charge exchanged and reabsorbed in 
the central region of the plasma they would cause a substantial amount of statistical 
noise, unless their weight had been reduced by being split into particles with 
comparable weight to those already circulating in the central region. Also relatively 
few Monte Carlo particles are used to calculate the major portion of the charge 
exchange loss. Therefore, for the purpose of calculating charge exchange, a given 
Monte Carlo beam ion is taken to represent N,, = IV/( IV), “potential” Monte Carlo 
beam neutrals; where W is the weight of the given Monte Carlo ion, and (W), is the 
average weight of particles in the central region of the plasma. Then the probability 
of one of these N,, particles suffering a charge exchange reaction during time 6t is 
Ncxno(ou)ex 6t. The code therefore performs the integral J = ( Ncxno(au),, dt along 
the fast ion orbit, until J = In( l/q), where 7 is again a random number such that 0 < 
r < 1. At this point the beam ion weight is reduced by WIN,,, and a secondary 
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neutral of weight WIN,, is generated. The velocity vector of the secondary neutral is 
determined from the pitch angle of the original beam ion. Since a random gyrophase 
was already selected for the calculation of N,,n,(ou),, due to collisions with primary 
beam neutrals, this same phase angle is used for the velocity vector of the secondary 
neutral. The neutral is then tracked across the plasma and either escapes or is 
reionized. 

C. Fast Neutral Transport 

As a beam neutral travels in the plasma, the code calculates an integral K = 
j q(c~tr)~,,~ dt along the neutral trajectory and when (and if) K reaches ln(l/q) (where 
7 is a new random number, 0 < q < 1) the particle is reionized. In addition the code 
keeps track of the time the particle spends in each zone in order to find the secondary 
beam neutral density and average energy. It also finds the ion, electron, and thermal 
neutral source profiles as was done for the primary beam neutrals. The deposition 
cross sections for the secondary beam neutrals are calculated in the same manner as 
those for the primary beam neutrals, with the exception that beam neutral-beam ion 
collisions are calculated on the basis of the average beam ion density and energy, in 
analogy to the way that the charge exchange of circulating beam ions with secondary 
beam neutrals is calculated. 

When a secondary beam neutral is redeposited in the plasma, a Russian roulette is 
performed which is complementary to the splitting that was done at its creation. In 
order to avoid following particles with weights much lower than the average at the 
deposition zone radius, r, the newly created beam ion (which typically has a 
relatively low weight for particles at zone radius r due to the initial splitting process) 
is given a chance of survival C = W/(W),, where W is the Monte Carlo weight of the 
secondary beam neutral, and (W), is the average weight of particles circulating in the 
zone at radius r. If the particle survives this selection process, its weight is then 
increased by a factor of l/C. In the unusual case where C > 1, no Russian roulette is 
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FIG. 2. A Monte Carlo beam particle slowing down, pitch angle scattering, charge exchanging and 
finally thermalizing in a PLT plasma. The neutral density has been enhanced by xl0 to provide a 
number of examples of charge exchange transport. 
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employed, nor is the weight of the particle changed. In this manner the radial profile 
of the Monte Carlo weight of the beam ions is approximately preserved, making the 
most effective use of the particles being followed in each zone. 

Figure 2 shows an example of a beam particle undergoing many of the processes 
described in Sections II through V. The particle is initially deposited as a counter 
passing ion and through pitch angle scattering enters a banana orbit and then scatters 
back to counter passing. It undergoes a number of charge exchange events, in each 
case being reionized within the plasma, and finally thermalizes at iTi. The 
parameters used in this calculation are typical of PLT neutral injection experiments, 
with the exception that the neutral density is enhanced by a factor of 10 in order to 
show a number of examples of charge exchange transport. 

VI. BEAM DRIVEN CURRENTS AND MOMENTUM TRANSFER 

The momentum balance between the circulating beam ions, the bulk ions, and the 
bulk electrons drifting in the toroidal electric field gives rise both to the effective 
electric field E* (see Section IV) which acts on the beam ions, and also to a net beam 
driven toroidal current. Including neoclassical effects, for large aspect ratio and 
Z, = 1 this current is given by 

j,, = j,(l - l/(Z) + 1.46 fi (1 + 0.7/(Z))/(Z)), 

where 

.ib = nbevllb. 

This calculation is only valid in the banana regime. For a situation where one 
assumes that banana trapping does not give rise to a neoclassical electron distribution 
function, the same expression for j,, is valid, but with E = 0. Effects associated with 
bulk plasma rotation are neglected. The net j,, can be easily calculated, since the 
power transferred to the fast ions from the ohmic heating circuit (as calculated in 
Section IV) is simply j,, E,. 

The collisional momentum transfer to the bulk ions and electrons is 
straightforward to calculate, although the present version of TRANSP does not solve 
the momentum balance equation, so this feature is only implemented in stand alone 
versions of the beam code. Drag and energy diffusion terms give rise to a transfer of 
angular momentum 

@ = mb[(Av)R 

while pitch angle scattering causes a transfer 

fi = m,v(AC)R. 
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The momentum gained from (lost to) the toroidal electric field during co- (counter-) 
injection would have been otherwise transferred between the ohmic heating circuit 
and the bulk electron, so this must be counted as a loss (gain) of momentum from 
(to) the bulk electrons. 

The beam ions also transfer momentum to the bulk plasma through their radial 
motion. Co- (counter-) injected ions tend to lose part of their mechanical toroidal 
angular momentum by moving inward (outward) across the poloidal magnetic field. 
To preserve quasi-neutrality the bulk plasma sets up a counterbalancing radial 
current, and through the resultingj, x B, force, picks up the momentum lost from the 
beam ions. The code calculates the beam j, by evaluating the net deposition of charge 
due to the beam particles, and making use of the relation 

V .j =ap/dt. 

VII. CONCLUSION 

To analyze 500 msec of a PLT discharge including 150 msec of neutral beam 
injection, using the TRANSP transport analysis code, typically requires -15 hr of 
CPU time on a VAX-l l/780 computer. Of this time -10 hr (equivalent to -25 min 
of CRAY-1 time) are devoted to the Monte Carlo beam code; the remainder of the 
time being used by the Monte Carlo thermal neutrals package, and the parts of the 
TRANSP code which solve the magnetic diffusion equation, the ion and electron 
energy balances, and the particle balance. Clearly it would be desirable to develop a 
faster beam treatment, even if it were somewhat less accurate, which could be mated 
with a simplified neutrals package to produce a transport analysis code to be used for 
preliminary study of data, parameter surveys, and other applications where large 
numbers of runs were required, but the highest degree of accuracy was not necessary. 

While the Monte Carlo techniques employed in TRANSP permit the inclusion of a 
great deal of detailed physics, it is the Monte Carlo approach itself which gives rise 
to the long running time. Thus it seems unlikely that omitting some of the physics 
treated in the present code, but retaining the Monte Carlo approach would result in a 
substantial improvement. The alternative technique which is commonly used is to 
numerically solve the drift kinetic equation for the fast ions on each of a number of 
magnetic surfaces. In order to include as much orbit physics as possible, the small 
banana width bounce averaged Fokker-Planck equation (Ref. [ 151) should form the 
basis of the calculation, but with a loss region (Ref. [ 161) taken into account for 
counter and perpendicular injection. 

In such a calculation much of the physics handled in the Monte Carlo calculation 
could be included. Orbit effects would be treated in a rough manner by averaging 
over first orbit excursions, and including loss regions. Beam deposition through 
collisions with circulating beam ions could be taken into account by integrating (av) 
over the calculated fast ion distribution as in Ref. [I 71. The only effect that seems 
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impossible to include, even in an approximate manner, without Monte Carlo 
techniques is the reabsorption of charge exchange fast neutrals. Thus it might prove 
necessary to retain a Monte Carlo subroutine to calculate the transport of beam 
particles by charge exchange. A simple reduction in the loss rate, modeling a 
“typical” reabsorption factor, fails to reflect the actual transport of beam particles 
across the plasma column, and a diffusion model would be inappropriate because of 
the anisotropy of the beam distribution, and because A,,,,, z a in neutral beam 
injection experiments. We speculate that a hybrid beam treatment including collisions 
with charged particles in a bounce averaged Fokker-Planck equation, but handling 
fast neutral transport with a Monte Carlo calculation, might be able to include most 
of the effects treated in the full Monte Carlo code, but with much less use of 
computer time. On the other hand, for situations where the fast ion banana width is 
large, and v,, is of order vc, proper treatment of the orbit physics is necessary. 

In conclusion, we have presented here a description of the Monte Carlo techniques 
employed in the neutral beam section of the TRANSP tokamak transport analysis 
code. Features of this code which are typically not included in beam-heating models 
for tokamak transport codes, and which are appropriate to tokamaks with intense 
neutral beam injection are: 1. the inclusion of beam-beam collisions in the deposition 
process, 2. a full treatment of thermal neutral sources and sinks for use in a parallel 
running neutral transport code, 3. detailed tokamak orbit physics, including a speed 
up technique which accurately calculates barely trapped banana orbits, as well as the 
transition to the plateau regime at low energies, 4. a Monte Carlo Fokker-Planck 
operator, accurate to order T/E,, which includes energy diffusion and electric tield 
effects, and 5. a complete treatment of charge exchange transport of fast ions. While 
this code requires a considerable amount of computer time, it accurately treats most 
of the known important processes which affect neutral beam injection experiments in 
axisymmetric tokamaks. 
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